Lifted Convex Quadratic Programming

نویسندگان

  • Martin Mladenov
  • Leonard Kleinhans
  • Kristian Kersting
چکیده

Symmetry is the essential element of lifted inference that has recently demonstrated the possibility to perform very efficient inference in highly-connected, but symmetric probabilistic models models. This raises the question, whether this holds for optimisation problems in general. Here we show that for a large class of optimisation methods this is actually the case. More precisely, we introduce the concept of fractional symmetries of convex quadratic programs (QPs), which lie at the heart of many machine learning approaches, and exploit it to lift, i.e., to compress QPs. These lifted QPs can then be tackled with the usual optimization toolbox (off-the-shelf solvers, cutting plane algorithms, stochastic gradients etc.). If the original QP exhibits symmetry, then the lifted one will generally be more compact, and hence their optimization is likely to be more efficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Valid Inequalities for Quadratic Programming with Continuous Variables and Binary Indicators

In this paper we study valid inequalities for a set that involves a continuous vector variable x ∈ [0, 1], its associated quadratic form xx , and binary indicators on whether or not x > 0. This structure appears when deriving strong relaxations for mixed integer quadratic programs (MIQPs). Valid inequalities for this set can be obtained by lifting inequalities for a related set without binary v...

متن کامل

A Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems

In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...

متن کامل

A Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations

In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Strengthening the SDP Relaxation of AC Power Flows with Convex Envelopes, Bound Tightening, and Lifted Nonlinear Cuts

This paper considers state-of-the-art convex relaxations for the AC power flow equations and introduces valid cuts based on convex envelopes and lifted nonlinear constraints. These valid linear inequalities strengthen existing semidefinite and quadratic programming relaxations and dominate existing cuts proposed in the literature. Combined with model intersection and bound tightening, the new l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1606.04486  شماره 

صفحات  -

تاریخ انتشار 2016